Unsupervised Large-Vocabulary Word Sense Disambiguation with Graph-based Algorithms for Sequence Data Labeling
نویسنده
چکیده
This paper introduces a graph-based algorithm for sequence data labeling, using random walks on graphs encoding label dependencies. The algorithm is illustrated and tested in the context of an unsupervised word sense disambiguation problem, and shown to significantly outperform the accuracy achieved through individual label assignment, as measured on standard senseannotated data sets.
منابع مشابه
Graph Connectivity Measures for Unsupervised Word Sense Disambiguation
Word sense disambiguation (WSD) has been a long-standing research objective for natural language processing. In this paper we are concerned with developing graph-based unsupervised algorithms for alleviating the data requirements for large scale WSD. Under this framework, finding the right sense for a given word amounts to identifying the most “important” node among the set of graph nodes repre...
متن کاملWSD-games: a Game-Theoretic Algorithm for Unsupervised Word Sense Disambiguation
In this paper we present an unsupervised approach to word sense disambiguation based on evolutionary game theory. In our algorithm each word to be disambiguated is represented as a node on a graph and each sense as a class. The algorithm performs a consistent class assignment of senses according to the similarity information of each word with the others, so that similar words are constrained to...
متن کاملImproved Semantic Graphs with Word Sense Disambiguation
Semantic graphs can be seen as a way of representing and visualizing textual information in more structured, RDF-like graphs. The reader thus obtains an overview of the content, without having to read through the text. In building a compact semantic graph, an important step is grouping similar concepts under the same label and connecting them to external repositories. This is achieved through d...
متن کاملGraph Based Algorithms for Word Sense Induction and Disambiguation
This paper presents a survey of graph based methods for word sense induction and disambiguation. Many areas of Natural Language Processing like Word Sense Disambiguation (WSD), text summarization, keyword extraction make use of Graph based methods. The very idea behind graph based approach is to formulate the problems in graph setting and apply clustering to obtain a set of clusters (senses). T...
متن کاملAn Experimental Study on Unsupervised Graph-based Word Sense Disambiguation
Recent research works on unsupervised word sense disambiguation report an increase in performance, which reduces their handicap from the respective supervised approaches for the same task. Among the latest state of the art methods, those that use semantic graphs reported the best results. Such methods create a graph comprising the words to be disambiguated and their corresponding candidate sens...
متن کامل